Discussion about this post

User's avatar
Hans G. Schantz's avatar

It's a challenge reviewing the old masters and avoiding reading into them too much with the benefit of subsequent interpretation and development. A good example is Newton's Second Law: "The alteration of motion is ever proportional to the motive force impress’d; and is made in the direction of the right line in which that force is impress’d." Yes, that became "F = m a," but only decades after Newton's death as d'Alembert, Euler, and others developed the mathematical formalism to apply Newton's thinking.

Reading the original side-by-side with the modern adaptation is an excellent idea.

Expand full comment
thinking-turtle's avatar

Interesting puzzle to think about! The second body will only reach half of its final speed at over half of the time.

In high school physics we denoted acceleration a = dv/dt, velocity v = dx/dt, and x as location. For the first body the acceleration a is constant (c), so v1 is linear (c*t) and x1 is quadratic (1/2*c*t^2) in time. For the second body a2 is zero, so v2 is constant and x2 is linear (v2*t) in time. Let tm be the final time. Given that v2 is half of v1(tm), x2(tm) = v2*tm = 1/2*v1(tm)*tm = 1/2*c*tm^2 = x2(tm).

Expand full comment
12 more comments...

No posts